Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(20): 11401-11414, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-35944903

RESUMO

Current therapies for Duchenne muscular dystrophy (DMD) use phosphorodiamidate morpholino oligomers (PMO) to induce exon skipping in the dystrophin pre-mRNA, enabling the translation of a shortened but functional dystrophin protein. This strategy has been hampered by insufficient delivery of PMO to cardiac and skeletal muscle. To overcome these limitations, we developed the FORCETM platform consisting of an antigen-binding fragment, which binds the transferrin receptor 1, conjugated to an oligonucleotide. We demonstrate that a single dose of the mouse-specific FORCE-M23D conjugate enhances muscle delivery of exon skipping PMO (M23D) in mdx mice, achieving dose-dependent and robust exon skipping and durable dystrophin restoration. FORCE-M23D-induced dystrophin expression reached peaks of 51%, 72%, 62%, 90% and 77%, of wild-type levels in quadriceps, tibialis anterior, gastrocnemius, diaphragm, and heart, respectively, with a single 30 mg/kg PMO-equivalent dose. The shortened dystrophin localized to the sarcolemma, indicating expression of a functional protein. Conversely, a single 30 mg/kg dose of unconjugated M23D displayed poor muscle delivery resulting in marginal levels of exon skipping and dystrophin expression. Importantly, FORCE-M23D treatment resulted in improved functional outcomes compared with administration of unconjugated M23D. Our results suggest that FORCE conjugates are a potentially effective approach for the treatment of DMD.


The biggest problem confronting oligonucleotide therapeutics is a lack of compounds capable of targeting compounds to diseased tissues. This paper reports a major advance targeting the transferrin receptor to increase the delivery of morpholine oligomers to muscle cells in vivo. This work suggests the possibility for improved treatments of muscular dystrophy and other diseases.


Assuntos
Distrofina , Éxons , Morfolinos , Distrofia Muscular de Duchenne , Oligonucleotídeos Antissenso , Animais , Camundongos , Distrofina/genética , Éxons/genética , Camundongos Endogâmicos mdx , Morfolinos/farmacologia , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Oligonucleotídeos Antissenso/farmacologia , Receptores da Transferrina/genética
2.
Mol Ther Nucleic Acids ; 3: e206, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25350581

RESUMO

Pompe disease is an autosomal recessive disorder caused by a deficiency of acid α-glucosidase (GAA; EC 3.2.1.20) and the resultant progressive lysosomal accumulation of glycogen in skeletal and cardiac muscles. Enzyme replacement therapy using recombinant human GAA (rhGAA) has proven beneficial in addressing several aspects of the disease such as cardiomyopathy and aberrant motor function. However, residual muscle weakness, hearing loss, and the risks of arrhythmias and osteopenia persist despite enzyme therapy. Here, we evaluated the relative merits of substrate reduction therapy (by inhibiting glycogen synthesis) as a potential adjuvant strategy. A phosphorodiamidate morpholino oligonucleotide (PMO) designed to invoke exon skipping and premature stop codon usage in the transcript for muscle specific glycogen synthase (Gys1) was identified and conjugated to a cell penetrating peptide (GS-PPMO) to facilitate PMO delivery to muscle. GS-PPMO systemic administration to Pompe mice led to a dose-dependent decrease in glycogen synthase transcripts in the quadriceps, and the diaphragm but not the liver. An mRNA response in the heart was seen only at the higher dose tested. Associated with these decreases in transcript levels were correspondingly lower tissue levels of muscle specific glycogen synthase and activity. Importantly, these reductions resulted in significant decreases in the aberrant accumulation of lysosomal glycogen in the quadriceps, diaphragm, and heart of Pompe mice. Treatment was without any overt toxicity, supporting the notion that substrate reduction by GS-PPMO-mediated inhibition of muscle specific glycogen synthase represents a viable therapeutic strategy for Pompe disease after further development.

3.
Nucleic Acid Ther ; 23(2): 109-17, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23308382

RESUMO

Expansions of CUG trinucleotide sequences in RNA transcripts provide the basis for toxic RNA gain-of-function that leads to detrimental changes in RNA metabolism. A CTG repeat element normally resides in the 3' untranslated region of the dystrophia myotonica-protein kinase (DMPK) gene, but when expanded it is the genetic lesion of myotonic dystrophy type 1 (DM1), a hereditary neuromuscular disease. The pathogenic DMPK transcript containing the CUG expansion is retained in ribonuclear foci as part of a complex with RNA-binding proteins such as muscleblind-like 1 (MBNL1), resulting in aberrant splicing of numerous RNA transcripts and consequent physiological abnormalities including myotonia. Herein, we demonstrate molecular and physiological amelioration of the toxic effects of mutant RNA in the HSA(LR) mouse model of DM1 by systemic administration of peptide-linked morpholino (PPMO) antisense oligonucleotides bearing a CAG repeat sequence. Intravenous administration of PPMO conjugates to HSA(LR) mice led to redistribution of Mbnl1 protein in myonuclei and corrections in abnormal RNA splicing. Additionally, myotonia was completely eliminated in PPMO-treated HSA(LR) mice. These studies provide proof of concept that neutralization of RNA toxicity by systemic delivery of antisense oligonucleotides that target the CUG repeat is an effective therapeutic approach for treating the skeletal muscle aspects of DM1 pathology.


Assuntos
Morfolinos/administração & dosagem , Distrofia Miotônica/genética , Peptídeos/administração & dosagem , Proteínas de Ligação a RNA/genética , Regiões 3' não Traduzidas/genética , Animais , Humanos , Camundongos , Morfolinos/química , Mutação , Distrofia Miotônica/metabolismo , Distrofia Miotônica/patologia , Miotonina Proteína Quinase , Oligonucleotídeos Antissenso/administração & dosagem , Peptídeos/química , Proteínas Serina-Treonina Quinases/genética , RNA/genética , RNA/toxicidade , Splicing de RNA/genética , Expansão das Repetições de Trinucleotídeos/genética , Repetições de Trinucleotídeos/genética
4.
PLoS One ; 7(6): e39416, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22761788

RESUMO

Alemtuzumab is a monoclonal antibody that targets cell surface CD52 and is effective in depleting lymphocytes by cytolytic effects in vivo. Although the cytolytic effects of alemtuzumab are dependent on the density of CD52 antigen on cells, there is scant information regarding the expression levels of CD52 on different cell types. In this study, CD52 expression was assessed on phenotypically distinct subsets of lymphoid and myeloid cells in peripheral blood mononuclear cells (PBMCs) from normal donors. Results demonstrate that subsets of PBMCs express differing levels of CD52. Quantitative analysis showed that memory B cells and myeloid dendritic cells (mDCs) display the highest number while natural killer (NK) cells, plasmacytoid dendritic cells (pDCs) and basophils have the lowest number of CD52 molecules per cell amongst lymphoid and myeloid cell populations respectively. Results of complement dependent cytolysis (CDC) studies indicated that alemtuzumab mediated profound cytolytic effects on B and T cells with minimal effect on NK cells, basophils and pDCs, correlating with the density of CD52 on these cells. Interestingly, despite high CD52 levels, mDCs and monocytes were less susceptible to alemtuzumab-mediated CDC indicating that antigen density alone does not define susceptibility. Additional studies indicated that higher expression levels of complement inhibitory proteins (CIPs) on these cells partially contributes to their resistance to alemtuzumab mediated CDC. These results indicate that alemtuzumab is most effective in depleting cells of the adaptive immune system while leaving innate immune cells relatively intact.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antígenos CD/metabolismo , Antígenos de Neoplasias/metabolismo , Morte Celular/efeitos dos fármacos , Glicoproteínas/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Alemtuzumab , Antígenos CD/genética , Antígenos de Neoplasias/genética , Antígeno CD52 , Morte Celular/imunologia , Glicoproteínas/genética , Humanos , Leucócitos Mononucleares/imunologia
5.
J Neuroimmunol ; 236(1-2): 1-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21640392

RESUMO

Autoimmune uveitis is an inflammatory disorder of the eye that can lead to pain and vision loss. Steroids and immunosuppressive drugs are currently the only therapeutics for uveitis and have serious ocular and systemic toxicities. Therefore, safer alternative therapeutics are desired. Alpha-melanocyte stimulating hormone (α-MSH) is a neuropeptide that suppresses effector T cell functions, induces regulatory T cells and has beneficial effects in certain autoimmune and transplant models. A novel d-amino acid peptide analog of native α-MSH (dRI-α-MSH) was produced that was protected from protease digestion and had increased selectivity for the melanocortin-1 receptor. Systemic delivery of the dRI-α-MSH analog dramatically suppressed disease progression and retained retinal architecture in the experimental autoimmune uveitis (EAU) model. Local delivery by periorbital injection was equally effective. Importantly, treatment with the novel dRI-α-MSH analog suppressed uveitis with a similar magnitude to the corticosteroid, dexamethasone. Data indicate that the novel dRI-α-MSH analogs show anti-inflammatory activities and have potential therapeutic use in uveitis and other autoimmune diseases.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Imunossupressores/uso terapêutico , Uveíte/tratamento farmacológico , alfa-MSH/análogos & derivados , alfa-MSH/uso terapêutico , Sequência de Aminoácidos , Animais , Doenças Autoimunes/imunologia , Feminino , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Fragmentos de Peptídeos/uso terapêutico , Uveíte/imunologia , alfa-MSH/biossíntese
6.
J Pept Sci ; 17(1): 47-55, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21171144

RESUMO

α-melanocyte stimulating hormone (α-MSH) is a tridecapeptide fragment of pro-opiomelanocortin (POMC) with broad effects on appetite, skin pigmentation, hormonal regulation, and potential roles in both inflammation and autoimmunity. The use of this peptide as an anti-inflammatory agent is limited by its low selectivity between the melanocortin receptors, susceptibility to proteolytic degradation, and rapid clearance from circulation. A retro-inverso (RI) sequence of α-MSH was characterized for receptor activity and resistance to protease. This peptide demonstrated surprisingly high selectivity for binding the melanocortin receptor 1 (MC1R). However, RI-α-MSH exhibited a diminished binding affinity for MC1R compared to α-MSH. Mapping of the residues critical for agonist activity, receptor binding, and selectivity by alanine scanning, identified the same critical core tetrapeptide required for the native peptide. Modest improvements in affinity were obtained by conservative changes employing non-natural amino acids and substitution of the C-terminal sequence with a portion of a MC1R ligand peptide previously identified by phage display. Recombination of these elements yielded a peptide with an identical K(i) as α-MSH at MC1R and a lower EC(50) in Mel-624 melanoma cells. A number of other structural modifications of the RI peptide were found to differ in effect from those reported for the L-form α-MSH, suggesting a significantly altered interaction with the MC1R.


Assuntos
Receptor Tipo 1 de Melanocortina/metabolismo , alfa-MSH/análogos & derivados , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Humanos , Concentração Inibidora 50 , Melanoma/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Dados de Sequência Molecular , Receptor Tipo 1 de Melanocortina/química , alfa-MSH/química , alfa-MSH/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...